Initial Evaluation of Novel Dual PIM/PI3K and Triple PIM/PI3K/mTOR Inhibitors in Multiple Myeloma.

Mairead Reidy, Marianne VanDijk, Niamh Keane, Michael O'Neill and Michael O’Dwyer

Department of Haematology, University College Hospital, Galway.

Introduction

Multiple myeloma (MM) is characterised by clonal expansion of malignant plasma cells in the bone marrow (BM). Despite significant advances in treatment it remains incurable in part due to the supportive role the BM environment plays in migration, survival, proliferation and drug resistance. BM microenvironmental signaling along with other factors such as treatment with proteasome inhibitors (PI) can contribute to activation of the PI3K/AKT survival pathway. The redundancy of signaling pathways provides back-up mechanisms allowing escape from targeted inhibition. One such compensatory pathway is that driven by PI3K, which produce parallel oncogenic signals to AKT and mTOR sharing several downstream molecular targets. As with PI3K/AKT, the PI3K/mTOR plays a major role in MM activation. PIK1 and particularly PIK3CD are known to be highly expressed in MM and play important roles in regulating MTCD-driven transcription, apoptosis, cytokine signalling, cell proliferation and protein translation. Combinations of separate P3K and PI3K inhibitors have shown evidence of synergy in MM cell lines and animal models and a PI3K/mTOR inhibitor has recently shown activity in relapsed/refractory MM.

Our objective is to evaluate the activity of a novel family of kinase inhibitors capable of inhibiting not only PI3K kinases (p110δ) but also P3K dual inhibitors (IBL202) and PI3K/mTOR (triple inhibitors IBL-301).

IBL-202 and IBL-301 are active in multiple myeloma.

IBL-202 and IBL-301 caused a loss in viability in multiple myeloma cell lines. For these experiments cells were treated for 24h and 48h with a number of compounds including a pan-PIM inhibitor (P4M), a dual inhibitor of PIM and PI3K (IBL-202), a triple inhibitor of PIM and PI3K/mTOR (IBL-301), a commercially available inhibitor of Pim and PI3K, AZD1208 and GDC0941, respectively. Viability was assayed using a CellTiter-Glo assay. IC50 values (µM) for each multiple myeloma cell line are depicted as a bar graph for both 24h and 48h.

PIM/PI3K inhibition induces apoptosis and inhibits cell cycle progression.

Since the PIM/PI3K pathways can mediate survival and growth of multiple myeloma cells we next examined if IBL-202 could induce apoptosis in MM cell lines. NC-IH203 and MM1.S cells were treated with varying concentrations of IBL-202 and apoptosis was measured by AnnexinV and flow cytometry analysis at 24h. We observed a marked decrease in the percentage of live cells (AnnexinV negative). AZD1208 and GDC0941 were less effective at inducing apoptosis.

The PIM kinases can phosphorylate cyclin dependent kinases inhibitors p21 and p27. In addition the P300/AM pathway is a strong regulator of cyclin D1, a key player in cell cycle progression. Thus we sought to investigate the impact of IBL-202 on cell cycle progression in both MM1.S and NC-IH203 cells. Cell proliferation was measured by assessing the incorporation of DAPI and EdU. Treatment of cells with IBL-202 over 24h resulted in a prominent reduction in the S-phase (EdU+) cells.

The apoptotic effect of IBL-202 is enhanced in the presence of stromal cells.

The bone marrow microenvironment, including the presence of stromal cells has been shown to be important for the survival of multiple myeloma cells. In a co-culture setting which includes multiple myeloma cells and stromal cells (H5d5a) we see an upregulation in expression levels of PI3K after 48h.

IBL-202 apoptotic effect is enhanced in hypoxia and IBL-202 down-regulates CXCR4 expression levels.

In an effort to further recapitulate the bone marrow microenvironment NC-IH203 and MM1.S cells were cultured in hypoxia chamber at 1% O2 for 15h. These cells were then treated with IBL-202 for 48h. Apoptotic levels were determined by AnnexinV and flow cytometry analysis. In a hypoxic environment MM cells are more sensitive to IBL-202.

Hypoxia induces protein levels of HIF1α and PIM1. MM1.S samples were harvested for western blot analysis after 15h incubation at 1% O2. Similarly it has been reported that hypoxic can induce levels of CXCR4 through regulation of PIM1. For initial examination MM1.S cells were treated for 24h with IBL-202 and samples were analysed for CXCR4 expression with flow cytometry. IBL-202 reduces levels of CXCR4 in a dose dependent manner.

Conclusion

Dual inhibition of PIM/PI3K and triple inhibition of PIM/PI3K/mTOR using the novel compound IBL-202 and 3-301 respectively are active in multiple myeloma.

IBL-202 can induce apoptosis and cause a block in cell cycle. Recapitulation of the bone marrow microenvironment through the addition of stromal cells on maintaining the cells in a hypoxic environment serve to further enhance the apoptotic effect of IBL-202.

Hypoxic conditions can upregulate levels of PIM1 which is reported to regulate CXCR4. IBL-202 has an inhibitory effect on surface levels of CXCR4 which needs further investigation.

References

Decker, S., J. Pinto, et al. (2014) “PIM kinases are Essential for Chronic Lymphocytic Leukemia Cell Survival” (PI3K) and IBL202 Mediated Microenvironmental Interactions (PIM1). Molecular Cancer Therapeutics 13(10): 251–261.


Acknowledgements